MA3238 Midterm Cheatsheet

by Devansh Shah

Probability Review

Definition of Expectation

$$
E[X] = \sum_{x \in R_X} xP(X = x)
$$

Property of Expectation:

$$
E[a + bX] = a + bE[X]
$$

Linearity of Expectation does not require independence - it always holds true.

$$
E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]
$$

Minimization of Variance: $E[X]$ is the constant c that minimizes the squared loss $E[(X-c)^2]$. Variance:

$$
Var(X) = E[(X - E(X))^2] = E[X^2] - (E[X])^2
$$

Properties of Variance:

$$
Var(a + bX) = b^2 Var(X)
$$

Moment Generating Function:

 $M_X(t) = E[e^{tX}]$

There is a 1-1 mapping between X and $M_X(t)$, i.e, the MGF completely describes the distribution of the random variable. Usefulness of MGF:

$$
E[X^k] = \frac{d^k}{dt^k} M_X(t)|_{t=0}
$$

MGF of Linear Transformation of Variable:

$$
M_{aX+b}(t) = e^{bt} M_X(at)
$$

Summary of Distributions

Joint Distribution

$$
p_{X,Y}(x,y) = P(X = x, Y = y) = P(\{\omega : X(\omega) = x \land Y(\omega) = y\})
$$

Marginal Distribution

$$
p_X(x) = P(X = x) = \sum_{y} P(X = x, Y = y) = P(\{\omega : X(\omega) = x\})
$$

Covariance

$$
Cov(X, Y) = E[(X – E(X))(Y – E(Y))] = E[XY] – E[X]E[Y]
$$

Correlation

$$
Cor(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(x)}\sqrt{Var(Y)}}
$$

Variance on linear combination of RVs:

$$
Var(aX + bY) = a^2Var(X) + b^2Var(Y) + 2abCov(X, Y)
$$

When X_i 's are independent, then $Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i)$ since the pairwise covariance is zero.

Also, when the RVs are independent,

$$
M_{\sum_{i=1}^{n} X_i}(t) = \prod_{i=1}^{n} M_{X_i}(t)
$$

That is, under independence of RVs, variance becomes additive and MGF becomes multiplicative.

Conditional Probability

$$
p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}
$$

Multiplication Law

$$
p_{X,Y}(x,y) = p_{X|Y}(x|y) \times p_Y(y) = p_{Y|X}(y|x) \times p_X(x)
$$

Law of Total Probability

$$
p_X(x) = \sum_{y} p_Y(y) p_{X|Y}(x|y)
$$

Bayes Theorem

$$
p_{Y|X}(y|x) = \frac{p_{X,Y}(x,y)}{p_X(x)} = \frac{p_{X|Y}(x|y) \times p_Y(y)}{\sum_{y} p_Y(y)p_{X|Y}(x|y)}
$$

Conditional Independence We say $X \perp Y$ given Z if for any x, y, z :

$$
P(X = x, Y = y | Z = z) = P(X = x | Z = z)P(Y = y | Z = z)
$$

Note: Independence and Conditional Independence are unrelated.

Law of Iterated Expectation

$$
E[X] = E[E(X|Y)]
$$

Law of Total Variance

$$
Var(X) = E[Var(X|Y)] + Var(E[X|Y])
$$

Random Sum: $Y = \sum_{i=1}^{N} X_i$ where X_i 's are i.i.d with mean μ and variance σ^2 , and N is also random. Expectation:

$$
E[Y] = \mu E[N]
$$

Variance:

$$
Var(Y) = \sigma^2 E[N] + \mu Var(N)
$$

Moment Generating Function:

$$
M_Y(t) = M_N(ln(M_X(t)))
$$

Markov Chain

Markovian Property: What happens afterwards $t > n$ is conditionally independent of what happened before $t < n$ given X_n .

Chapman-Kolmogorov Equations for higher order transition matrices:

$$
P^{n,n+m+1} = P^{n,k} * P^{k,n+m+1} \quad \forall n < k < n+m+1
$$

Stationary MC: Transition Probability Matrix P does not depend on time n.

First Step Analysis

Express the quantity of interest as:

$$
a_i = E[\sum_{n=0}^{T} g(X_n) | X_0 = i]
$$

for every state i , and see what happens after one-step transitions.

General Solution to Gambler's Ruin

Case 1: When $p = 1/2$,

$$
\mathrm{P}(\mathrm{broken})=1-\frac{k}{N}
$$

$$
E[\text{games played}] = k(N - k)
$$

Case 2: When $p \neq 1/2$,

$$
P(\text{broken}) = 1 - \left(\frac{1 - (q/p)^k}{1 - (q/p)^N}\right)
$$

$$
E[\text{games played}] = \frac{1}{(p-q)} \left[\frac{N(1 - (q/p)^k)}{1 - (q/p)^N} - k \right]
$$

A drunk man will find his home, but a drunk bird may get lost forever.

Classification of States

 $\textbf{Accessible:} \hspace{.1cm} i \rightarrow j \implies \exists m > 0, P_{ij}^{(m)} > 0$

Communication: $i \longleftrightarrow j \implies i \rightarrow j \land j \rightarrow i$

Communication is an equivalence relation.

Irreducible MC: Only one communication class.

Reducible MC: Multiple communication classes.

Return Probability

$$
P_{ii}^{(n)} = P(X_n = i | X_0 = i)
$$

If $P_{ii}^{(n)} \to 0$ when $n \to \infty$, then the state *i* is transient.

First Return Probability

$$
f_{ii}^{(n)} = P(X_1 \neq i, X_2 \neq i, \dots, X_{n-1} \neq i, X_n = i | X_0 = i)
$$

Relation betewen return probability and first return probability:

$$
P_{ii}^{(n)} = \sum_{k=0}^{n} f_{ii}^{(k)} P_{ii}^{(n-k)}
$$

Define f_{ii} as the total probability of revisiting i in the future:

$$
f_{ii} = \sum_{n=0}^{\infty} f_{ii}^{(n)} = \lim_{N \to \infty} \sum_{n=0}^{N} f_{ii}^{(n)}
$$

A state *i* is said to be **recurrent** if $f_{ii} = 1$, and **transient** if $f_{ii} < 1$

Note: If i is a recurrent state, it does NOT imply that $P_{ii}^{(n)} \to 1$ as $n \to \infty$.

Number of Revisits

$$
N_i = \sum_{i=0}^{\infty} I(X_n = i)
$$

Theorem of Number of Revisits

- For transient state,

$$
E[N_i|X_0=i] = \frac{f_{ii}}{1 - f_{ii}}
$$

- For recurrent state,

$$
E[N_i|X_0=i]=\infty
$$

Number of Revisits and Return Probability:

$$
E[N_i|X_0 = i] = \sum_{i=1}^{\infty} P_{ii}^{(n)}
$$

Summary of Recurrent and Transient States

$$
R \iff f_{ii} = 1 \iff \sum_{n=1}^{\infty} P_{ii}^{(n)} = \infty \iff E[N_i | X_0 = i] = \infty
$$

$$
T \iff f_{ii} < 1 \iff \sum_{n=1}^{\infty} P_{ii}^{(n)} < \infty \iff E[N_i | X_0 = i] < \infty
$$

State in the same communication class are either all recurrent or all transient.

An MC with finite states must have at least one recurrent class.

Long Run Performance

Period: For a state i, let $d(i)$ be the greatest common divisor of ${n : n \geq 1, P_{ii}^{(n)} > 0}.$ If ${n : n \geq 1, P_{ii}^{(n)} > 0}$ is empty (starting from *i*, the chain will never revisit *i*), then we define $d(i) = 0.$

Aperiodic: State *i* is aperiodic $\iff d(i) = 1$ Periodicity Theorem For a MC, let $d(i)$ be the period of state *i*, then:

- 1. If i and j can communicate, $d(i) = d(j)$
- 2. There is an N such that $P_{ii}^{(N*d(i))} > 0$, and for any $n \ge N$, $P_{ii}^{(n*d(i))} > 0$
- 3. There is $m > 0$ such that $P_{ji}^{(m)} > 0$, and when n is sufficiently large, we have $P_{ji}^{(m+nd(i))} > 0$

Regular Markov Chain

A MC with transition probability matrix P is regular if $\exists k > 0, \forall i, j, P^k_{ij} > 0.$

If a MC is irreducible, aperiodic, with finite states, then it is a regular MC.

Main Theorem: Suppose P is a regular transition probability matrix with states $S = \{1, 2, ..., N\}$. Then,

- 1. The limit $\lim_{n\to\infty} p_{ij}^{(n)}$ exists. Meaning, as $n\to\infty$, the marginal probability of $P(X_n = j | X_0 = i)$ will converge to a finite value.
- 2. The limit does not depend on the initial state, and we write:

$$
\pi_j = \lim_{n \to \infty} P_{ij}^{(n)}
$$

3. The distribution of all of the π_k is a probability distribution, i.e., $\sum_{k=1}^{N} \pi_k = 1$, and this is the **limiting** distribution

4. The limits $\pi = (\pi_1, \pi_2, \ldots, \pi_n)$ are the solution of the system of equations:

$$
\pi_j = \sum_{k=1}^{N} \pi_k P_{kj}, \quad j = 1, 2, ..., N
$$

$$
\sum_{k=1}^{N} \pi_k = 1
$$

In matrix form,

$$
\pi P = \pi, \quad \sum_{k=1}^{N} \pi_k = 1
$$

5. The limiting distribution π is unique.

Interpretations of π

- π_i is the (marginal) probability that the MC is in state j for the long run (regardless of the actual instant of time, and the initial state, hence "marginal").
- π gives the limit of \mathbf{P}^n
- \bullet π can be seen as the long run proportion of time in every state. That is,

$$
E\left[\frac{1}{m}\sum_{k=0}^{m-1}I(X_k=j)|X_0=i\right]\to\pi_j\text{ as }m\to\infty
$$

Until time m (for a large value of m), the chain visits state j around $m \times \pi_i$ times.

Irregular Markov Chain

2 possibilities:

- 1. $|S| = \infty$ and $\pi_i = 0$ for all i (which means that all the states are transient).
- 2. We find a solution π for $\pi P = \pi$ (the distribution doesn't "move")

Stationary Distribution A distribution (p_1, p_2, \dots) on S is called a stationary distribution, if it satisfies for all $i = 1, 2, \ldots$ that:

$$
P(X_n = i) = p_i \implies P(X_{n+1} = i) = p_i
$$

Note that if the initial distribution of X_0 is not π , we cannot claim any results.

For a regular MC, the stationary distribution is also a limiting distribution.

A key observation is that the stationary distribution must have $\pi_i = 0$ for all transient states i