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Probability Review
Definition of Expectation

E[X] =
∑

x∈RX

xP (X = x)

Property of Expectation:

E[a+ bX] = a+ bE[X]

Linearity of Expectation does not require independence - it
always holds true.

E[

n∑
i=1

Xi] =

n∑
i=1

E[Xi]

Minimization of Variance: E[X] is the constant c that
minimizes the squared loss E[(X − c)2].
Variance:

V ar(X) = E[(X − E(X))2] = E[X2]− (E[X])2

Properties of Variance:

V ar(a+ bX) = b2V ar(X)

Moment Generating Function:

MX(t) = E[etX ]

There is a 1-1 mapping between X and MX(t), i.e, the MGF
completely describes the distribution of the random variable.
Usefulness of MGF:

E[Xk] =
dk

dtk
MX(t)|t=0

MGF of Linear Transformation of Variable:

MaX+b(t) = ebtMX(at)

Summary of Distributions

Joint Distribution

pX,Y (x, y) = P (X = x, Y = y) = P ({ω : X(ω) = x∧Y (ω) = y})

Marginal Distribution

pX(x) = P (X = x) =
∑
y

P (X = x, Y = y) = P ({ω : X(ω) = x})

Covariance

Cov(X,Y ) = E[(X −E(X))(Y −E(Y ))] = E[XY ]−E[X]E[Y ]

Correlation

Cor(X,Y ) =
Cov(X,Y )√

V ar(x)
√

V ar(Y )

Variance on linear combination of RVs:

V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2abCov(X,Y )

When Xi’s are independent, then
V ar(

∑n
i=1 Xi) =

∑n
i=1 V ar(Xi) since the pairwise covariance

is zero.

Also, when the RVs are independent,

M∑n
i=1 Xi

(t) =

n∏
i=1

MXi
(t)

That is, under independence of RVs, variance becomes
additive and MGF becomes multiplicative.

Conditional Probability

pX|Y (x|y) = P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)

Multiplication Law

pX,Y (x, y) = pX|Y (x|y)× pY (y) = pY |X(y|x)× pX(x)

Law of Total Probability

pX(x) =
∑
y

pY (y)pX|Y (x|y)

Bayes Theorem

pY |X(y|x) =
pX,Y (x, y)

pX(x)
=

pX|Y (x|y)× pY (y)∑
y pY (y)pX|Y (x|y)

Conditional Independence We say X ⊥ Y given Z if for
any x, y, z:

P (X = x, Y = y|Z = z) = P (X = x|Z = z)P (Y = y|Z = z)

Note: Independence and Conditional Independence are
unrelated.

Law of Iterated Expectation

E[X] = E[E(X|Y )]

Law of Total Variance

V ar(X) = E[V ar(X|Y )] + V ar(E[X|Y ])

Random Sum: Y =
∑N

i=1 Xi where Xi’s are i.i.d with mean
µ and variance σ2, and N is also random.
Expectation:

E[Y ] = µE[N ]

Variance:

V ar(Y ) = σ2E[N ] + µV ar(N)

Moment Generating Function:

MY (t) = MN (ln(MX(t)))

Markov Chain

Markovian Property: What happens afterwards t > n is
conditionally independent of what happened before t < n
given Xn.

Chapman-Kolmogorov Equations for higher order
transition matrices:

Pn,n+m+1 = Pn,k ∗ Pk,n+m+1 ∀n < k < n+m+ 1

Stationary MC: Transition Probability Matrix P does not
depend on time n.

First Step Analysis

Express the quantity of interest as:

ai = E[

T∑
n=0

g(Xn)|X0 = i]

for every state i, and see what happens after one-step
transitions.

General Solution to Gambler’s Ruin

Case 1: When p = 1/2,

P(broke) = 1−
k

N

E[games played] = k(N − k)

Case 2: When p ̸= 1/2,

P(broke) = 1−
(

1− (q/p)k

1− (q/p)N

)

E[games played] =
1

(p− q)

[
N(1− (q/p)k)

1− (q/p)N
− k

]
A drunk man will find his home, but a drunk bird may get lost
forever.



Classification of States
Accessible: i→ j =⇒ ∃m > 0, P

(m)
ij > 0

Communication: i←→ j =⇒ i→ j ∧ j → i

Communication is an equivalence relation.

Irreducible MC: Only one communication class.

Reducible MC: Multiple communication classes.

Return Probability

P
(n)
ii = P (Xn = i|X0 = i)

If P
(n)
ii → 0 when n→∞, then the state i is transient.

First Return Probability

f
(n)
ii = P (X1 ̸= i,X2 ̸= i, . . . , Xn−1 ̸= i,Xn = i|X0 = i)

Relation betewen return probability and first return
probability:

P
(n)
ii =

n∑
k=0

f
(k)
ii P

(n−k)
ii

Define fii as the total probability of revisiting i in the future:

fii =

∞∑
n=0

f
(n)
ii = lim

N→∞

N∑
n=0

f
(n)
ii

A state i is said to be recurrent if fii = 1, and transient if
fii < 1

Note: If i is a recurrent state, it does NOT imply that

P
(n)
ii → 1 as n→∞.

Number of Revisits

Ni =
∞∑
i=0

I(Xn = i)

Theorem of Number of Revisits
- For transient state,

E[Ni|X0 = i] =
fii

1− fii

- For recurrent state,

E[Ni|X0 = i] =∞

Number of Revisits and Return Probability:

E[Ni|X0 = i] =

∞∑
i=1

P
(n)
ii

Summary of Recurrent and Transient States

R ⇐⇒ fii = 1 ⇐⇒
∞∑

n=1

P
(n)
ii =∞ ⇐⇒ E[Ni|X0 = i] =∞

T ⇐⇒ fii < 1 ⇐⇒
∞∑

n=1

P
(n)
ii <∞ ⇐⇒ E[Ni|X0 = i] <∞

State in the same communication class are either all recurrent
or all transient.

An MC with finite states must have at least one recurrent
class.

Long Run Performance
Period: For a state i, let d(i) be the greatest common divisor

of {n : n ≥ 1, P
(n)
ii > 0}. If {n : n ≥ 1, P

(n)
ii > 0} is empty

(starting from i, the chain will never revisit i), then we define
d(i) = 0.

Aperiodic: State i is aperiodic ⇐⇒ d(i) = 1

Periodicity Theorem For a MC, let d(i) be the period of
state i, then:

1. If i and j can communicate, d(i) = d(j)

2. There is an N such that P
(N∗d(i))
ii > 0, and for any

n ≥ N , P
(n∗d(i))
ii > 0

3. There is m > 0 such that P
(m)
ji > 0, and when n is

sufficiently large, we have P
(m+nd(i))
ji > 0

Regular Markov Chain

A MC with transition probability matrix P is regular if
∃k > 0,∀i, j, Pk

ij > 0.

If a MC is irreducible, aperiodic, with finite states, then it is a
regular MC.

Main Theorem: Suppose P is a regular transition
probability matrix with states S = {1, 2, . . . , N}. Then,

1. The limit limn→∞ p
(n)
ij exists. Meaning, as n→∞, the

marginal probability of P (Xn = j|X0 = i) will converge
to a finite value.

2. The limit does not depend on the initial state, and we
write:

πj = lim
n→∞

P
(n)
ij

3. The distribution of all of the πk is a probability
distribution, i.e.,

∑N
k=1 πk = 1, and this is the limiting

distribution

4. The limits π = (π1, π2, . . . , πn) are the solution of the
system of equations:

πj =

N∑
k=1

πkPkj , j = 1, 2, . . . , N

N∑
k=1

πk = 1

In matrix form,

πP = π,
N∑

k=1

πk = 1

5. The limiting distribution π is unique.

Interpretations of π

• πj is the (marginal) probability that the MC is in state
j for the long run (regardless of the actual instant of
time, and the initial state, hence ”marginal”).

• π gives the limit of Pn

• π can be seen as the long run proportion of time in
every state. That is,

E

[
1

m

m−1∑
k=0

I(Xk = j)|X0 = i

]
→ πj as m→∞

Until time m (for a large value of m), the chain visits
state j around m× πj times.

Irregular Markov Chain

2 possibilities:

1. |S| =∞ and πi = 0 for all i (which means that all the
states are transient).

2. We find a solution π for πP = π (the distribution
doesn’t ”move”)

Stationary Distribution A distribution (p1, p2, . . . ) on S is
called a stationary distribution, if it satisfies for all i = 1, 2, . . .
that:

P (Xn = i) = pi =⇒ P (Xn+1 = i) = pi

Note that if the initial distribution of X0 is not π, we cannot
claim any results.

For a regular MC, the stationary distribution is also a limiting
distribution.

A key observation is that the stationary distribution must
have πi = 0 for all transient states i
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