MA3238 Finals Cheatsheet

by Devansh Shah

$$
E[\text{games played}] = \frac{1}{(p-q)} \left[\frac{N(1 - (q/p)^k)}{1 - (q/p)^N} - k \right]
$$

$$
\overline{\mathbf{C}} = \mathbf{C} \mathbf{C}
$$

 $\sum_{x \in R_X} xP(X = x)$ Property of Expectation:

Probability Review Definition of Expectation

 $E[a + bX] = a + bE[X]$ Linearity of Expectation does not require independence - it always holds true. $E[\sum_{n=1}^n$ $\frac{n}{2}$

 $E[X] = \sum$

$$
X_i] = \sum_{i=1} E[X_i]
$$

 $i=1$ Minimization of Variance: $E[X]$ is the constant c that minimizes the squared loss $E[(X - c)^2]$. Variance:

 $Var(X) = E[(X - E(X))^{2}] = E[X^{2}] - (E[X])^{2}$ Properties of Variance:

 $Var(a + bX) = b^2 Var(X)$ Moment Generating Function:

 $M_X(t) = E[e^{tX}]$

There is a 1-1 mapping between X and $M_X(t)$, i.e, the MGF completely describes the distribution of the random variable. Usefulness of MGF: \mathbf{z}

$$
E[X^k] = \frac{d^k}{dt^k} M_X(t)|_{t=0}
$$

MGF of Linear Transformation of Variable: $M_{aX+b}(t) = e^{bt} M_X(at)$

Joint Distribution
 $p_X, \gamma(x, y) = P(X = x, Y = y) = P(\{\omega : X(\omega) = x \land Y(\omega) = y\})$

Marginal Distribution

$$
p_X(x) = P(X = x) = \sum_{y} P(X = x, Y = y) = P(\{\omega : X(\omega) = x\})
$$

 $\begin{aligned} \textbf{Covariance} \quad & \overline{y} \quad \textbf{Correlation} \quad & \text{Cov}(X,Y) = E[(X-E(X))(Y-E(Y))]=E[XY]-E[X]E[Y] \quad \textbf{Correlation} \quad & \text{Cov}(X,Y) \quad \textbf{Cov}(X,Y) \quad \textbf{Cov}(X,Y) \quad \textbf{Cov}(X,Y) \quad & \text{Cov}(X,Y) \quad & \text{Cov}(X,Y) \quad$

$$
Cor(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(x)} \sqrt{Var(Y)}}
$$

 $Cor(X, Y) = \frac{1}{\sqrt{Var(x)}\sqrt{Var(Y)}}$
Variance on linear combination of RVs:

 $Var(aX + bY) = a^2Var(X) + b^2Var(Y) + 2abCov(X, Y)$ When X_i 's are independent, then $Var(\sum_{i=1}^n X_i) = \sum_{i=1}^n Var(X_i)$ since the pairwise covariance is zero. Also, when the RVs are independent,

$$
M_{\sum_{i=1}^{n} X_i}(t) = \prod_{i=1}^{n} M_{X_i}(t)
$$

That is, under independence of RVs, variance becomes additive and MGF becomes multiplicative.

Conditional Probability

$$
p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}
$$

Multiplication Law

 $p_{\,X,\,Y}^{}(x,y) = p_{\,X\,|\,Y}^{}(x|y) \times p_{\,Y}^{}(y) = p_{\,Y\,|\,X}^{}(y|x) \times p_{\,X}^{}(x)$ Law of Total Probability

 $p_X(x) = \sum_{y} p_Y(y) p_{X|Y}(x|y)$

Bayes Theorem

$$
p_{Y|X}(y|x) = \frac{p_{X,Y}(x,y)}{p_{Y}(x)} = \frac{p_{X|Y}(x|y) \times p_{Y}(y)}{\sum_{y \in \mathcal{Y}(y)p_{X|Y}(x|y)}}
$$

 $p_X(x) = \sum_{y} p_Y(y)p_X|Y(x|y)$
Conditional Independence We say $X \perp Y$ given Z if for any $x, y, z: P(X = x | Z = z)P(Y = y | Z = z)$ Note: Independence and Conditional Independence are unrelated.

Law of Iterated Expectation

 $E[X] = E[E(X|Y)]$ Law of Total Variance

 $Var(X) = E[Var(X|Y)] + Var(E[X|Y])$ **Random Sum**: $Y = \sum_{i=1}^{N} X_i$ where X_i 's are i.i.d with mean μ and variance σ^2 ,

and N is also random.
$$
E[Y] = \mu E[N]
$$

Variance: $Var(Y) = \sigma^2 E[N] + \mu^2 Var(N)$ $M_\text{Y}\left(t\right) = M_\text{N}\left(ln\left(M_X\left(t\right)\right)\right)$

$$
M_Y(t) = M_N(\ln(M_X
$$

First Step Analysis Express the quantity of interest as:

$$
a_i = E[\sum_{n=0}^{T} g(X_n) | X_0 = i]
$$

for every state i, and see what happens after one-step transitions. General Solution to Gambler's Ruin

Case 1: When
$$
p = 1/2
$$
,

$$
\label{eq:1} {\rm P({\rm broke}) = 1 - \frac{k}{N} \atop \mbox{\sim 1/2,} }
$$
 Case 2: When $p \neq 1/2,$

$$
P(\text{broken}) = 1 - \left(\frac{1 - (q/p)^k}{1 - (q/p)^N}\right)
$$

 \mathbf{I}

A drunk man will find his home, but a drunk bird may get lost forever. Classification of States

Accessibility: For a stationary MC $\{X_n, n = 0, 1, 2, \ldots\}$ with transition probability matrix P, state j is said to be accessible from state i, denoted by $i \rightarrow j, \text{ if } P_{ij}^{\left(m\right)} > 0 \text{ for some } m \geq 0.$

Communication: If two states i and j are accessible from each other, i.e., $i \rightarrow j$
and $j \rightarrow i$, then they are said to communicate, denoted by $i \leftarrow j$.
Reducibility: An MC is irreducible if ALL the states communicate with another (i.e,. there is a single communication class). Otherwise, the chain is said

to be reducible (more than one communication class).
Return Probability: For any state i , recall the probability that starting from state *i* and returns at *i* at the *n*th transition is that: $P_{ii}^{(n)} = P(X_n = i | X_0 = i)$.

By definition, $P_{ii}^{(0)} = 1, P_{ii}^{(1)} = P_{ii}.$
First Return Probability: For any state i, define the probability that starting from state i , the first return to i is at the nth transition:

 $f_{ii}^{(n)} = P(X_1 \neq i, X_2 \neq i, \ldots, X_{n-1} \neq i, X_n = i | X_0 = i)$. We set $f_{ii} = 0$. Relationship between Return Probability and First Return Probability:

$$
P_{ii}^{(n)} = \sum_{k=0}^{n} f_{ii}^{(k)} P_{ii}^{(n-k)}
$$

Note: Recurrency $\implies P_{ii}^{(n)} \to 1.$

$$
f_{ii} = \sum_{n=0}^{\infty} f_{ii}^{(n)} = \lim_{N \to \infty} \sum_{n=0}^{N} f_{ii}^{(n)}
$$

Recurrent and Transient: A state *i* is said to be recurrent if $f_{ii} = 1$, and transient if $f_{ii} < 1$. Number of Revisits:

- If $f_{ii} < 1$ (i.e., i is transient), there is $E[N_i|X_0=i] = \frac{f_{ii}}{i}$
- If $f_{ii} = 1$ (i.e,. *i* is recurrent), there is $E[N_i|X_0 = i] = \infty$ We also have:
- $P(N_i \ge m | X_0 = i) = f_{ii}^m$ (probability of revisiting the state more than m times).

\n- $$
E[N_i|X_0=i] = \sum_{n=1}^{\infty} P_{ii}^{(n)}
$$
\n- Equivalent Definitions of Recurrence and Transience:
\n

$$
\begin{aligned} \text{Recurrent} & \iff f_{ii} = 1 \iff \sum_{n=1}^{\infty} P_{ii}^{(n)} = \infty \iff E[N_i | X_0 = i] = \infty \\ \text{Transient} & \iff f_{ii} < 1 \iff \sum_{n=1}^{\infty} P_{ii}^{(n)} < \infty \iff E[N_i | X_0 = i] < \infty \end{aligned}
$$

- Note: • If i and j are in the same communication class, then either they are both recurrent or they're both transient.
- Corollary: An MC with finite states must have at least one recurrent class. Long Run Performance

Period: For a state i , let $d(i)$ be the greatest common divisor of

 ${n : n \geq 1, P_n^{(n)} > 0}.$ If ${n : n \geq 1, P_n^{(n)} > 0}$ is empty (starting from *i*, the chain will never revisit *i*), then we define $d(i) = 0$. If $d(i) = 1$, we call the state i to be **aperiodic**. Periodicity Theorem:

1. If i and j can communicate, $d(i) = d(j)$

- 2. There is a threshold N such that $P_{ii}^{(N*d(i))} > 0$, and for any $n \geq N$, $P_{ii}^{(n*d(i))} > 0$
- 3. There is $m > 0$ such that $P_{j i}^{(m)} > 0$, and when n is sufficiently large, we have $P_{ji}^{(m+nd(i))}>0$

If all the states in an MC have period $= 1$, then we say that the MC is aperiodic. Regular MC: A Markov Chain with transition probability matrix P is called regular if there exists an integer $k > 0$ such that all the elements P^k are strictly positive (non-zero). If a Markov Chain is irreducible, aperiodic, with finite states, then it is a regular

MC.

Main Theorem

: Suppose P is a regular transition probability matrix with states $S = \{1, 2, ..., N\}$. Then,

- 1. The limit $\lim_{n\to\infty} p_{ij}^{(n)}$ exists. Meaning, as $n \to \infty$, the marginal probability of $P(X_n = j | X_0 = i)$ will converge to a finite value.
- 2. The limit does not depend on the initial state, and we write: $\pi_j = \lim_{n \to \infty} P_{ij}^{(n)}$
- 3. The distribution of all of the π_k is a probability distribution, i.e., $\sum_{k=1}^{N}{\pi_k} = 1,$ and this is the limiting distribution

4. The limits $\pi = (\pi_1, \pi_2, \ldots, \pi_n)$ are the solution of the system of equations:

$$
\pi_j = \sum_{k=1}^N \pi_k P_{kj}, \quad j = 1, 2, \dots, N
$$

$$
\sum_{k=1}^N \pi_k = 1
$$

In matrix form,

 $\pi P = \pi$, $\sum_{k=1}^{N} \pi_k = 1$

5. The limiting distribution π is unique.

Interpretations of π

- \bullet π_j is the (marginal) probability that the MC is in state j for the long run (regardless of the actual instant of time, and the initial state, hence $\overline{\mathfrak{m}}$ marginal").
- $\bullet~~\pi$ gives the limit of ${\bf P}^n$
	- π can be seen as the long run proportion of time in every state. That is, \mathbb{R}

$$
E\left[\frac{1}{m}\sum_{k=0}^{m-1}I(X_k=j)|X_0=i\right]\to\pi_j\text{ as }m\to\infty
$$

 Until time m (for a large value of m), the chain visits state j around

 $m \times \pi_j$ times.

Irregular Markov Chain

2 possibilities:

- 1. $|S| = \infty$ and $\pi_i = 0$ for all i (which means that all the states are transient).
- 2. We find a solution π for $\pi P = \pi$ (the distribution doesn't "move")

Stationary Distribution A distribution (p_1, p_2, \ldots) on S is called a stationary distribution, if it satisfies for all $i = 1, 2, ...$ that:
 $P(X_n = i) = p_i \implies P(X_{n+1} = i) = p_i$

Note that if the initial distribution of
$$
X_0
$$
 is not n , we cannot claim any results.
For a regular MC, the stationary distribution is also a limiting distribution.

For a regular MC, the stationary distribution is also a limiting distribution.
A key observation is that the stationary distribution must have $\pi_i = 0$ for all transient states i

Long Run Performance for Infinite MCs

First Return Time: $R_i = \min\{n \geq 1, X_n = i\}$. In words, it is the first time that the process X_n returns to i. Relationship between first-return time, and first-return probability:

$$
f_{Ii}^{(n)} = P(R_i = n | X_0 = i).
$$

Mean Duration Between Visits:

$$
m_i = E[R_i|X_0 = i] = \sum_{n=1}^{\infty} nP(R_n = i|X_0 = i) = \sum_{n=1}^{\infty} n f_{ii}^{(n)}
$$

 $\begin{array}{l} {n \! = \! 1} \qquad \qquad n \! = \! 1 \qquad \qquad } \\ {\rm Note~that~we~can~only~define}~~m_i~{\rm when}~f_{ii} \, = \, 1. \ \, {\rm When}~{\rm we}~{\rm have}~f_{ii} \, < \, 1,~{\rm then~the} \end{array}$ probability that there are infinitely many steps between 2 visits is non-zero, and equal to $1 - f_{ii}$ so the expectation will be infinity (which is not very meaningful).

Limit Theorem For any recurrent irreducible MC, define:

 $P(X_n = 1 | X_{n-1} = 0) = 1$

1. For any $i, j \in S$,

2. If $d=1$, then

3. If $d \times 1$, then

regular MC.

$$
m_i = E[R_i | X_0 = i] = \sum_{n=1}^{\infty} n f_{ii}^{(n)}
$$

Then,

$$
\lim_{n \to \infty} \sum_{k=1}^{n} P_{ij}^{(k)}/n = 1/m_j
$$

 $\lim_{n \to \infty} \sum_{n=1}^{\infty} P_{ij}^{(n)} = 1/m_j$

 $\lim_{n \to \infty} \sum_{j=1}^{\infty} P_{jj}^{(nd)} = d/m_j$ $n=1$ Note that the theorem applies for MCs with infinitely many states too! It also applies for periodic MCs.
Remarks:
● When $m_j = \infty$, the limiting probability at each state is 0, although it is recurrent. We call such a MC to be null recurrent. For example, consider the symmetric random walk with $p = 1/2$ and no absorbing state. Note that it is still recurrent (there's only one class so it must be recurrent). • When $m_j < \infty$, the limiting probability at each state is $1/m_j$. In such a case, we call it a positive recurrent MC. e.g. Random walk with $p < 1/2$

When $d = 1$, the limiting probability is positive, which means that it is a

(process eventually reaches 0) and "reflection" at 0, i.e.,

When $d > 1$, we can only consider the steps nd.

Basic Limit Theorem

For a positive recurrent $(m_i < \infty)$, irreducible, and aperiodic MC, (n)

•
$$
\lim_{n\to\infty} P_{ij}^{(n)}
$$
 exists for any *i*, *j* and is given by:

$$
\lim_{n \to \infty} P_{ij}^{(n)} = \lim_{n \to \infty} P_{jj}^{(n)} = \frac{1}{m_j}
$$
\n• If π is the solution to the equation $\pi P = \pi$, then we have:

$$
\pi_j = \frac{1}{m}
$$

A positive recurrent, irreducible, aperiodic MC is called an ergodic MC. Hence, the basic limit theorem applies to all ergodic MCs. We do NOT require the MC to have finite/infinite states for the theorem to hold.

Procedure for a General MC 1. Find all the classes C_L .

distribution.

- 2. Set up a new MC where every recurrent class is denoted by one state. Then, find P (absorbed in recurrent class $C_k|X_0 = i$) denoted by $u_{k|i} \rightarrow$
- this gives the probability of entering any recurrent class, given the initial 3. We can ignore all transient classes because the process will eventually leave them in the long-run, i.e., their long-term probability is zero.
- 4. For every recurrent class C_k , we find the period d.
	- (a) Aperiodic $(d = 1)$: find the corresponding limiting distribution of state j in this class, denoted by $\pi_{j|k}$, by considering the sub-MC restricted on C_k
	- (b) Periodic $(d > 1)$: there is NO limiting distribution, but we can still check the long-run proportion of time in each state by finding m_j (i.e., we can still find π but the interpretation is different in this case)

5. Consider the initial state $X_0 = i$:

(a) If j is transient, then
$$
\pi_j = 0
$$

(b) If
$$
j \in C_k
$$
 is recurrent, then: $\pi_j|_i = u_k|_i \pi_j|_k$

6. Finally, given the initial distribution $X_0 \sim \pi_0$, then: $\pi_{j|\pi_0} = \sum$ $\sum_{i \in S} \pi_{j|i} \pi_0(i)$

Branching Process
Suppose initially there are X_0 individuals. In the *n*-th generation, the X_n individuals independently give rise to number of offsprings $\xi_1^{(n)}, \xi_2^{(n)}, \cdots, \xi_{X_n}^{(n)}$

muividuals independently give rise to number of orispirings ζ_1 , ζ_2 , ...
which are i.i.d. random variables with the same distribution as:
 $P(\xi = k) = p_k$, $k = 0, 1, 2, \ldots$
The total number of individuals produced for

$$
X_{n+1} = \xi_1^{(n)}, \xi_2^{(n)}, \cdots, \xi_{X_n}^{(n)}
$$

Then, the process $\{X_n\}_{n=0}^{\infty}$ is a **branching process**. An important (and strong) assumption of the branching process is that ξ is not dependent of X_n .

Partial Information

If we are only given the mean μ and variance σ^2 of ξ , and suppose $X_0 = k$:

$$
E[X_n \,|\, X_0 \,=\, k] \,=\, k \mu^{\,n}
$$

$$
Var(X_n | X_0 = k) = k\mu^{n-1} \sigma^2 \times \begin{cases} \frac{1-\mu^n}{1-\mu}, & \mu \neq 1\\ n, & \mu = 1 \end{cases}
$$

In the derivation of the above, we use the law of total variance for a random sum:

 $Var(X_{n+1}) = \mu^{2}Var(X_{n}) + \sigma^{2}E[X_{n}]$

Appendix

•

•

Complete Information

Probability Generating Function (PGF) For a discrete random variable X , the probability generating function is defined as:

$$
\phi_{X}(t) = E[t^X] = \sum_{k=0}^{\infty} P(X = k)t^k
$$

Note: If X and Y are independent, then $\phi_{X+Y}^{x+y}(t) = \phi_X(t)\phi_Y(t)$. Distribution of X_n given $X_0 = k$:

$$
\phi_{X_n}(t) = [\phi_{\xi}^{(n)}(t)]^k
$$

Extinction Probability: Here, u_n is the probability of going extinct by the nth generation.

$$
u_n^{(k)} = [\phi_{\xi}^{(n)}(0)]^k
$$

 $u_n^{(k)} = [\phi_{\xi}^{(k)}(0)]^k$
Eventually Extinct: If $u_{\infty} = 1$, it means the population is guaranteed to go

extinct eventually.
The value of u_{∞} must be the solution of the equation:

$$
x = \phi_{\xi}(x), \quad x \in [0, 1]
$$

\n
$$
\phi_{\xi}(x)
$$
 is an increasing function on (0, 1]. The second derivative is also positive -
\nhence, $\phi_{\xi}(x)$ will increase faster and faster. Note that:

$$
\frac{d}{dx}\phi_{\xi}(x)|_{x=1} = \sum_{k=1}^{\infty} P(\xi = k) \cdot k \cdot 1^{k-1} = \sum_{k=0}^{\infty} k P(\xi = k) = E[\xi]
$$

Consider a branching process with the distribution of ξ as F. The extinction probability u_{∞} can be found as follows:

- If $P(\xi = 0)$, then $u_{\infty} = 0 \rightarrow$ no chance of extinction because every individual generates at least one offspring.
- If $P(\xi = 0) > 0$ and $E[\xi] < 1$, then the process is called subcritical, and $u_{\infty} = 1$ (the population eventually goes extinct)
- If $P(\xi = 0) > 0$ and $E[\xi = 1]$, then the process is called critical and $u_{\infty} = 1$ (still goes extinct)
- If $P(\xi = 0) > 0$ and $E[\xi] > 1$, then the process is called supercritical and u_{∞} < 1, and it can be found by the equation: $x = \phi(x)$ where $\phi(x) = \sum_k P(\xi = k) x^k$

Page Rank Algorithm

- The state space S is the set of all webpages
- Index set $T = \{0, 1, 2, \dots\}$ • Transition Probability Matrix:

$$
P_{ij} = \begin{cases} \frac{1}{\# \text{ of connected webpages}}, & \text{if there is an arrow from i to j} \\ 0, & \text{otherwise} \end{cases}
$$

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ (0) otherwise
For an irreducible and positive recurrent MC induced, we order the webpages in the order: $(\pi, \ldots) \geq (\pi, \ldots) \geq (\ldots) \geq (\pi, \ldots)$

To handle absorbing states, we add perturbation to the MC at every step. To handle absorbing states, we add perturbation to the MC at every step.
$$
\pi_{n+1} = (1 - \lambda)\pi_n P + \lambda \pi_0
$$

where
$$
0 < \lambda < 1
$$
 MCMC Sampling

,

Global Balanced Equations:

$$
\forall j, \ \pi(j) = \sum_{k \in S} \pi(k) P_{kj}
$$

$$
Local\;Balanced\; Equations:
$$

Local Balanded Equations:

\n
$$
\forall i \neq j, \ \pi(i)P_{ij} = \pi(j)P_{ji}
$$
\nLocal Balanded Equations in terms of Thinning Parameter:

\n
$$
\pi(i)Q_{ij}\alpha(i,j) = \pi_j Q_{ji}\alpha(j,i)
$$

where
$$
0 < \alpha \leq 1
$$

Hastings Metropolis Algorithm

1. Set up Q so that the MC with transition probability matrix Q is irreducible

2. Define
$$
\alpha(i, j)
$$
 as:

$$
\alpha(i,j) = \min\left(\frac{\pi_j Q_{ji}}{\pi_i Q_{ij}}, 1\right)
$$

$$
\label{eq:3.3.3} \begin{array}{ll} \text{3. Then, P is obtained as: } \\ P_{ij} = Q_{ij} \, \alpha(i,j), \quad i \neq j \end{array} \tag{1}
$$

$$
P_{ii} = Q_{ii} + \sum_{k \neq i} Q_{ik} (1 - \alpha(i, k))
$$
\n⁽²⁾

Simulation Algorithm

TOTAL_STEPS = 5000 # large enough to ensure convergence process = [] # track the path of the process x = 1 # initial state for step in 1...TOTAL_STEPS obtain t from T \tilde{b} Binom(max(2 * x, 2), 1/2) calculate alpha(X_n, t) generate u from U["] uniform(0, 1) $if (u < a)$ rha) $\{$ $x = t$ # accept jump from X_n to y, i.e. X_{n+1} = t } else { x = x # no jump, thinning } process.add(x) # cut of the first 1000 steps

process = process[1001:]

To use MCMC sampling, we only need the kernel function, not the normalising constant.

Poisson Process Poisson Distribution

If $X \sim Poi(\lambda)$,

$$
p(x) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x = 0, 1, 2, \cdots
$$

- Mean = λ , Variance = λ , PGF = exp[$\lambda(t-1)$] • When $n \to \infty$ and $p_n \to 0$, then $Poi(\lambda)$ is a good approximation for
- *Bin*(*n*, *p_n*) where $\lambda = np_n$ is a constant.
● If $X \sim Poi(\lambda_1)$, $Y \sim Poi(\lambda_2)$, then $X + Y \sim Poi(\lambda_1 + \lambda_2)$
	- If $X \sim Po(\lambda)$ and $Z|X \sim Binomial(X, r)$, then $Z \sim Poi(\lambda r)$

Defining a Poisson Process

Definition 1: Using Poisson distribution. X is a Poisson process with parameter λ if:

- $X(0) = 0$
-

• For any $t \geq 0$, $X(t) \sim Poi(\lambda t)$
• for any $s \geq 0$, $t > 0$, we have $X(s + t) - X(s) \sim Poi(\lambda t)$ Definition 2: Law of Rare Events Let $\epsilon_1, \epsilon_2, \cdots, \epsilon_n$ be independent Bernoulli random variables where $P(\epsilon_i = 1) = p_i$, and let $S_n = \epsilon_1 + \cdots + \epsilon_n$. The exact probability for S_n , and the Poisson probability with $\lambda = p_1 + \cdots + p_n$ differ by at most: 

$$
P(S_n = k) - \frac{e^{-\lambda} \lambda^k}{k!} \le \sum_{i=1}^n p_i^2
$$

Let $N((s, t])$ be a RV counting the number of events occurring in the interval

- (s, t]. Then, $N((s, t])$ is a Poisson process of intensity $\lambda > 0$ if:
	- The process increments $N((t_0, t_1]), N((t_1, t_2]), \cdots, N((t_{n-1}, t_n])$ are independent random variables. •

$$
P(N((t, t+h]) = k) = \begin{cases} 1 - \lambda h - o(h), & k = 0 \\ \lambda h, & k = 1 \\ o(h), & k > 2 \end{cases}
$$

Definition 3: Using waiting times.

- We can completely specify a Poisson process by simply recording the waiting times (or the sojourn times).
- \bullet The waiting time W_1 has (exponential) PDF:
	- $f_{W_1}(t) = \lambda e^{-\lambda t}, t \ge 0$

• For
$$
n \geq 2
$$
, W_n follows a gamma distribution with PDF:

$$
f_{W_n}(t) = e^{-\lambda t} \frac{\lambda^n t^{n-1}}{(n-1)!}, \quad n = 1, 2, \cdots, t \ge 0
$$

- n^{n} (n − 1)!
• Exponential distributions have a memorylessness property.
- Given that $X(t) = 1$, we have: $f_{W_1}(x) = \frac{1}{t}$ for all $x \le t$ and 0 otherwise (uniform on the interval $(0, t]$.
- Given that $X(t) = n$, the joint distribution of n independent $Unif(0, t)$ random variables (followed by ordering in ascending order) gives the distribution of the waiting times to be:

$$
f(w_1, w_2, \cdots, w_n | X(t) = n) = \frac{n!}{n!}
$$

• The PDF of the kth order statistic (i.e., the kth waiting time in this case) given that $X(t) = n$ is given by:

$$
f_k(x) = \frac{n!}{(n-k)!(k-1)!} \frac{1}{t} \left(\frac{x}{t}\right)^{k-1} \left(\frac{t-x}{t}\right)^{n-k}
$$

Table 1: Common Discrete Distributions

$$
f_{\rm{max}}
$$

Distribution	PDF	Mean	Variance	Table 2: Common Continuous Distributions $_{\rm CDF}$	$_{\rm MGF}$
Uniform	$f(x; a, b) = \frac{1}{b-a}$	$a+b$	$(b-a)^2$	$F(x; a, b) = \frac{x-a}{b-a}$	$rac{e^{tb}-e^{ta}}{t(b-a)}$ $M(t; a, b) =$
Normal	$x - \mu$ $f(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e$			$\frac{x-\mu}{\sigma\sqrt{2}}$ $\Phi(x; \mu, \sigma) = \frac{1}{2} 1 + \text{erf} $	$M(t; \mu, \sigma) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$
Exponential	$f(x; \lambda) = \lambda e^{-\lambda x}$			$F(x; \lambda) = 1 - e^{-\lambda x}$	$M(t; \lambda) = \frac{\lambda}{\lambda - t}, t < \lambda$
Gamma	$f(x; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$	$\frac{\alpha}{2}$	α $\overline{R2}$	$\gamma(\alpha, \beta) = \frac{1}{\Gamma(\alpha)} \gamma(\alpha, \beta x)$	$M(t; \alpha, \beta) =$ $\overline{B-t}$

Table 2: Common Continuous Distributions