MA3238 Finals Cheatsheet

by Devansh Shah

$$E[\text{games played}] = \frac{1}{(p-q)} \left[\frac{N(1-(q/p)^k)}{1-(q/p)N} - k \right]$$

A drunk man will find his home, but a drunk bird may get lost forever.

Accessibility: For a stationary MC $\{X_n, n = 0, 1, 2, \ldots\}$ with transition probability matrix P, state j is said to be accessible from state i, denoted by

 $i \to j$, if $P_{ij}^{(m)} > 0$ for some $m \ge 0$.

Communication: If two states i and j are accessible from each other, i.e., $i \rightarrow j$ and $j \rightarrow i$, then they are said to communicate, denoted by $i \leftarrow j j$. Reducibility: An MC is irreducible if ALL the states communicate with one another (i.e,. there is a single communication class). Otherwise, the chain is said to be reducible (more than one communication class).

Return Probability: For any state *i*, recall the probability that starting from

state *i* and returns at *i* at the *n*th transition is that: $P_{ii}^{(n)} = P(X_n = i|X_0 = i)$. By definition, $P_{ii}^{(0)} = 1$, $P_{ii}^{(1)} = P_{ii}$. **First Return Probability:** For any state *i*, define the probability that starting from state *i*, the first return to *i* is at the *n*th transition:

 $f_{ii}^{(n)} = P(X_1 \neq i, X_2 \neq i, \dots, X_{n-1} \neq i, X_n = i | X_0 = i).$ We set $f_{ii} = 0$. Relationship between Return Probability and First Return Probability:

$$P_{ii}^{(n)} = \sum_{k=0}^{n} f_{ii}^{(k)} P_{ii}^{(n-k)}$$

Note: Recurrency $\neq P_{ij}^{(n)} \to 1$.

$$f_{ii} = \sum_{n=0}^{\infty} f_{ii}^{(n)} = \lim_{N \to \infty} \sum_{n=0}^{N} f_{ii}^{(n)}$$

Recurrent and Transient: A state *i* is said to be recurrent if $f_{ii} = 1$, and transient if $f_{ii} < 1$. Number of Revisits:

- If $f_{ii} < 1$ (i.e., *i* is transient), there is $E[N_i | X_0 = i] = \frac{f_{ii}}{1 f_{ii}}$ If $f_{ii} = 1$ (i.e., *i* is recurrent), there is $E[N_i | X_0 = i] = \infty$
- We also have:
- $P(N_i \ge m | X_0 = i) = f_{ii}^m$ (probability of revisiting the state more than mtimes). (---)

•
$$E[N_i|X_0 = i] = \sum_{n=1}^{\infty} P_{ii}^{(n)}$$

Equivalent Definitions of Recurrence and Transience:

Recurrent
$$\iff f_{ii} = 1 \iff \sum_{n=1}^{\infty} P_{ii}^{(n)} = \infty \iff E[N_i | X_0 = i] = \infty$$

Transient
$$\iff f_{ii} < 1 \iff \sum_{n=1}^{N} P_{ii}^{(N)} < \infty \iff E[N_i | X_0 = i] < \infty$$

Note:

- If i and j are in the same communication class, then either they are both recurrent or they're both transient.
- Corollary: An MC with finite states must have at least one recurrent class Long Run Performance

Period: For a state i, let d(i) be the greatest common divisor of

 $\{n:n \ge 1, P_{i_1}^{(n)} > 0\}$. If $\{n:n \ge 1, P_{i_1}^{(n)} > 0\}$ is empty (starting from *i*, the chain will never revisit *i*), then we define d(i) = 0. If d(i) = 1, we call the state *i* to be **aperiodic**. **Periodicity Theorem**:

- 1. If i and j can communicate, d(i) = d(j)
- 2. There is a threshold N such that $P_{ii}^{(N*d(i))} > 0$, and for any $n \ge N$, $P^{(n*d(i))} > 0$
- 3. There is m > 0 such that $P_{ji}^{(m)} > 0$, and when n is sufficiently large, we have $P_{ji}^{(m+nd(i))} > 0$

If all the states in an MC have period = 1, then we say that the MC is aperiodic. **Regular MC**: A Markov Chain with transition probability matrix P is called regular if there exists an integer k > 0 such that all the elements P^k are strictly positive (non-zero). If a Markov Chain is irreducible, aperiodic, with finite states, then it is a regular

MC

Main Theorem

: Suppose P is a regular transition probability matrix with states $S = \{1, 2, \ldots, N\}$. Then,

- 1. The limit $\lim_{n\to\infty} p_{ij}^{(n)}$ exists. Meaning, as $n\to\infty$, the marginal probability of $P(X_n = j|X_0 = i)$ will converge to a finite value.
- 2. The limit does not depend on the initial state, and we write: $\pi_j = \lim_{n \to \infty} P_{ij}^{(n)}$
- 3. The distribution of all of the π_k is a probability distribution, i.e., $\sum_{k=1}^{N} \pi_k = 1$, and this is the limiting distribution

4. The limits $\pi = (\pi_1, \pi_2, \ldots, \pi_n)$ are the solution of the system of equations:

$$\pi_j = \sum_{k=1}^{N} \pi_k P_{kj}, \quad j = 1, 2, \dots, I$$

$$\sum_{k=1}^{N} \pi_k = 1$$

In matrix form,

 $\pi P = \pi, \qquad \sum^{N} \pi_{k} = 1$

5. The limiting distribution π is unique

Interpretations of π

- π_i is the (marginal) probability that the MC is in state j for the long run (regardless of the actual instant of time, and the initial state, hence marginal"). π gives the limit of Pⁿ
- π can be seen as the long run proportion of time in every state. That is,

$$E\left\lfloor \frac{1}{m} \sum_{k=0}^{m-1} I(X_k = j) | X_0 = i \right\rfloor \to \pi_j \text{ as } m \to \infty$$

Until time m (for a large value of m), the chain visits state j around $m \times \pi_i$ times.

Irregular Markov Chain

2 possibilities:

- 1. $|S| = \infty$ and $\pi_i = 0$ for all *i* (which means that all the states are transient)
- 2. We find a solution π for $\pi P = \pi$ (the distribution doesn't "move")

Stationary Distribution A distribution $(p_1, p_2, ...)$ on S is called a stationary distribution, if it satisfies for all $i = 1, 2, \dots$ that: $P(X_n = i) = p_i \implies P(X_{n+1} = i) = p_i$

Note that if the initial distribution of X_0 is not π , we cannot claim any results. For a regular MC, the stationary distribution is also a limiting distribution. A key observation is that the stationary distribution must have $\pi_i = 0$ for all transient states i

Long Run Performance for Infinite MCs

First Return Time: $R_i = \min\{n \ge 1, X_n = i\}$. In words, it is the first time that the process X_n returns to *i*. Relationship between first-return time, and first-return probability.

$$J_{Ii} = F(R_i = n | A_0 = i).$$

Mean Duration Between Visits

$$m_i = E[R_i | X_0 = i] = \sum_{n=1}^{\infty} nP(R_n = i | X_0 = i) = \sum_{n=1}^{\infty} nf_{ii}^{(n)}$$

Note that we can only define m_i when $f_{ii} = 1$. When we have $f_{ii} < 1$, then the probability that there are infinitely many steps between 2 visits is non-zero, and equal to $1 - f_{ii}$ so the expectation will be infinity (which is not very meaningful).

Limit Theorem For any recurrent irreducible MC, define:

$$m_i = E[R_i|X_0 = i] = \sum_{n=1}^{\infty} n f_{ii}^{(n)}$$

Then.

$$\lim_{n \to \infty} \sum_{k=1}^{n} P_{ij}^{(k)}/n = 1/m_j$$

2. If d = 1, then

$$\lim_{n \to \infty} \sum_{n=1}^{\infty} P_{ij}^{(n)} = 1/m_j$$

3. If d > 1, then

1. For any $i, j \in S$,

$$\lim_{n\to\infty}\sum_{n=1}^{\infty}P_{jj}^{(nd)}=d/m_j$$

Note that the theorem applies for MCs with infinitely many states too! It also applies for periodic MCs.

- Remarks: When $m_i = \infty$, the limiting probability at each state is 0, although it is recurrent. We call such a MC to be null recurrent. For example, consider the symmetric random walk with p = 1/2 and no absorbing state. Note that it is still recurrent (there's only one class so it must be recurrent).
 - When m_i < ∞, the limiting probability at each state is 1/m_i. In such a case, we call it a positive recurrent MC. e.g. Random walk with p < 1/2(process eventually reaches 0) and "reflection" at 0, i.e., $P(X_n = 1 | X_{n-1} = 0) = 1$
 - When d > 1, we can only consider the steps nd.
 - When d = 1, the limiting probability is positive, which means that it is a regular MC.

Probability Review

Definition of Expectation

 $E[X] = \sum_{x \in B_X} x P(X = x)$

Property of Expectation:

$$E[a + bX] = a + b$$

E[a + bX] = a + bE[X]Linearity of Expectation does not require independence - it always holds true. $E[\sum_{i=1}^{n} X_{i}] = \sum_{i=1}^{n} E[X_{i}]$

$$\begin{bmatrix} X_i \end{bmatrix} = \begin{bmatrix} Z \\ i \end{bmatrix} \begin{bmatrix} X_i \end{bmatrix}$$

Minimization of Variance: E[X] is the constant c that minimizes the squared loss $E[(X - c)^2]$. Variance

 $Var(X) = E[(X - E(X))^{2}] = E[X^{2}] - (E[X])^{2}$ Properties of Variance:

 $Var(a + bX) = b^2 Var(X)$ Moment Generating Function:

 $M_X(t) = E[e^{tX}]$ There is a 1-1 mapping between X and $M_X(t),$ i.e, the MGF completely describes the distribution of the distribution of the random variable. Usefulness of MGF:

$$E[X^k] = \frac{d^k}{u^k} M_X(t)|_{t=0}$$

MGF of Linear Transformation of Variable: $M_{aX+b}(t) = e^{bt} M_X(at)$

Joint Distribution $p_{X,Y}(x,y) = P(X = x, Y = y) = P(\{\omega : X(\omega) = x \land Y(\omega) = y\})$ Marginal Distribution

$$p_X(x) = P(X = x) = \sum_y P(X = x, Y = y) = P(\{\omega : X(\omega) = x\})$$

Covariance Cov(X, Y) = E[(X - E(X))(Y - E(Y))] = E[XY] - E[X]E[Y]Correlation

$$Cor(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}$$

Variance on linear combination of RVs:

Variate on linear combination on two: $Var(aX + bX) = a^2 Var(X) + b^2 Var(Y) + 2abCov(X, Y)$ When X_i 's are independent, then $Var(\sum_{i=1}^n X_i) = \sum_{i=1}^n Var(X_i)$ since the pairwise covariance is zero. Also, when the RVs are independent,

$$M_{\sum_{i=1}^{n} X_{i}}(t) = \prod_{i=1}^{n} M_{X_{i}}(t)$$

That is, under independence of RVs, variance becomes additive and MGF becomes multiplicative.

Conditional Probability

Law of Iterated Expectation

and N is also random. Expectation:

First Step Analysis

Case 1: When p = 1/2,

Case 2: When $p \neq 1/2$,

Express the quantity of interest as:

General Solution to Gambler's Ruin

Variance

$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Multiplication Law

 $p_{X,Y}(x,y) = p_{X|Y}(x|y) \times p_Y(y) = p_{Y|X}(y|x) \times p_X(x)$ Law of Total Probability

$$p_X(x) = \sum p_Y(y) p_{X|Y}(x|y)$$

Bayes Theorem

$$p_{Y|X}(y|x) = \frac{p_{X,Y}(x,y)}{p_{X}(x)} = \frac{p_{X|Y}(x|y) \times p_{Y}(y)}{\sum_{y} p_{Y}(y) p_{X|Y}(x|y)}$$

E[X] = E[E(X|Y)]

Random Sum: $Y = \sum_{i=1}^{N} X_i$ where X_i 's are i.i.d with mean μ and variance σ^2 ,

 $E[Y] = \mu E[N]$

 $Var(Y) = \sigma^2 E[N] + \mu^2 Var(N)$

terest as: $a_i = E[\sum_{n=0}^T g(X_n) | X_0 = i]$

$$\begin{split} \mathbf{P}(\mathrm{broke}) &= 1 - \frac{k}{N} \\ E[\mathrm{games \ played}] &= k(N-k) \end{split}$$

 $P(broke) = 1 - \left(\frac{1 - (q/p)^k}{1 - (q/p)^k}\right)$

Conditional Independence We say $X \perp Y$ given Z if for any x, y, z: P(X = x, Y = y | Z = z) = P(X = x | Z = z)P(Y = y | Z = z)Note: Independence and Conditional Independence are unrelated.

Law of Total Variance Var(X) = E[Var(X|Y)] + Var(E[X|Y])

for every state i, and see what happens after one-step transitions.

Moment Generating Function: $M_{\boldsymbol{Y}}(t) = M_N(ln(M_{\boldsymbol{X}}(t)))$

Basic Limit Theorem

For a positive recurrent ($m_j < \infty$), irreducible, and aperiodic MC, (---)

$$\lim_{n \to \infty} P_{ij}^{(n)} = \lim_{n \to \infty} P_{jj}^{(n)} = \frac{1}{m_j}$$

• If
$$\pi$$
 is the solution to the equation $\pi P = \pi$, then we have:

$$j = \frac{1}{m}$$

A positive recurrent, irreducible, aperiodic MC is called an **ergodic** MC. Hence, the basic limit theorem applies to all ergodic MCs. We do NOT require the MC to have finite/infinite states for the theorem to hold. Procedure for a General MC

1. Find all the classes C_L

- 2. Set up a new MC where every recurrent class is denoted by one state. Then, find P(absorbed in recurrent class $C_k | X_0 = i$) denoted by $u_k |_i$ – this gives the probability of entering any recurrent class, given the initial distribution.
- 3. We can ignore all transient classes because the process will eventually leave them in the long-run, i.e., their long-term probability is zero.
- 4. For every recurrent class C_k , we find the period d.
 - (a) Aperiodic (d=1): find the corresponding limiting distribution of state j in this class, denoted by $\pi_{j|k}$, by considering the sub-MC restricted on C_{l}
 - (b) Periodic (d > 1): there is NO limiting distribution, but we can still check the long-run proportion of time in each state by finding m_j (i.e., we can still find π but the interpretation is different in this case)

5. Consider the initial state $X_0 = i$:

(a) If j is transient, then
$$\pi_j = 0$$

(b) If
$$j \in C_k$$
 is recurrent, then:

$$\pi_{j \mid i} = u_k_{\mid i} \pi_{j \mid k}$$

6. Finally, given the initial distribution $X_0 \sim \pi_0$, then: $\pi_{j|\pi_0} = \sum_{i \in S} \pi_{j|i} \pi_0(i)$

Branching Process

Suppose initially there are X_0 individuals. In the *n*-th generation, the X_n individuals independently give rise to number of offsprings $\xi_1^{(n)}, \xi_2^{(n)}, \cdots, \xi_{X_n}^{(n)}$ which are i.i.d. random variables with the same distribution as: $P(\xi = k) = p_k, \quad k = 0, 1, 2, \cdots$ The total number of individuals produced for the (n + 1)-th generation is:

$$X_{n+1} = \xi_1^{(n)}, \xi_2^{(n)}, \cdots, \xi_{X_n}^{(n)}$$

Then, the process $\{X_n\}_{n=0}^{\infty}$ is a branching process. An important (and strong) assumption of the branching process is that ξ is not dependent of X_n .

Partial Information

If we are only given the mean μ and variance σ^2 of ξ , and suppose $X_0 = k$:

$$E[X_n | X_0 = k] = k\mu^n$$

$$Var(X_{n}|X_{0} = k) = k\mu^{n-1}\sigma^{2} \times \begin{cases} \frac{1-\mu^{n}}{1-\mu}, & \mu \neq 1\\ n, & \mu = 1 \end{cases}$$

In the derivation of the above, we use the law of total variance for a random sum: $Var(X_{n+1}) = \mu^2 Var(X_n) + \sigma^2 E[X_n]$

Appendix

Complete Information

Probability Generating Function (PGF) For a discrete random variable X, the probability generating function is defined as:

$$\phi_X(t) = E[t^X] = \sum_{k=0}^{\infty} P(X=k)t^k$$

Note: If X and Y are independent, then $\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t)$. Distribution of X_n given $X_0 = k$:

$$\phi_{X_n}(t) = \left[\phi_{\xi}^{(n)}(t)\right]^k$$

Extinction Probability: Here, u_n is the probability of going extinct by the nth generation.

$$u_n^{(k)} = [\phi_{\epsilon}^{(n)}(0)]^k$$

Eventually Extinct: If $u_{\infty} = 1$, it means the population is guaranteed to go extinct eventually.

The value of u_{∞} must be the solution of the equation: $x = \phi_{\xi}(x), \quad x \in [0, 1]$

 $\phi_{\mathcal{E}}(x)$ is an increasing function on (0, 1]. The second derivative is also positive hence, $\phi_{\xi}(x)$ will increase faster and faster. Note that:

$$\int_{-\infty}^{\infty} \frac{d}{dx} \phi_{\xi}(x)|_{x=1} = \sum_{k=1}^{\infty} P(\xi=k) \cdot k \cdot 1^{k-1} = \sum_{k=0}^{\infty} kP(\xi=k) = E[\xi]$$

k=0Consider a branching process with the distribution of ξ as F. The extinction probability u_{∞} can be found as follows:

- If $P(\xi = 0)$, then $u_{\infty} = 0 \rightarrow$ no chance of extinction because every individual generates at least one offspring.
- If $P(\xi = 0) > 0$ and $E[\xi] < 1$, then the process is called subcritical, and $u_{\infty} = 1$ (the population eventually goes extinct)
- If $P(\xi = 0) > 0$ and $E[\xi = 1]$, then the process is called critical and $u_{\infty} = 1$ (still goes extinct)
- If $P(\xi = 0) > 0$ and $E[\xi] > 1$, then the process is called supercritical and $u_{\infty} < 1$, and it can be found by the equation: $x = \phi(x)$ where $\phi(x) = \sum_k P(\xi = k) x^k$

Page Rank Algorithm

- The state space S is the set of all webpages
- Index set $T = \{0, 1, 2, \dots\}$ Transition Probability Matrix:

$$P_{ij} = \begin{cases} \frac{1}{\# \text{ of connected webpages}}, & \text{if there is an arrow from i to j} \\ 0, & \text{otherwise} \end{cases}$$

For an irreducible and positive recurrent MC induced, we order the webpages in the order:

$$(\pi_N)(1) \leq (\pi_N)(2) \geq \cdots \geq (\pi_N)(|S|)$$

To handle absorbing states, we add perturbation to the MC at every step
 $\pi_{n+1} = (1-\lambda)\pi_n P + \lambda \pi_0$

where
$$0 < \lambda < 1$$

MCMC Sampling Global Bala

dianced Equations:

$$\forall j, \ \pi(j) = \sum \ \pi(k) P_{kj}$$

$$\forall i \neq j, \ \pi(i)P_{ij} = \pi(j)P_{ji}$$

Local Balanced Equations in terms of Thinning Parameter

$$\pi(i)Q_{ij}\alpha(i,j) = \pi_j \bar{Q}_{ji}\alpha(j,i)$$
 where $0 < \alpha < 1$

Hastings Metropolis Algorithm

1. Set up Q so that the MC with transition probability matrix Q is irreducible

2. Define
$$\alpha(i, j)$$
 as

$$\alpha(i,j) = \min\left(\frac{\pi_j Q_{ji}}{\pi_i Q_{ij}}, 1\right)$$

3. Then, P is obtained as:
$$P_{ij} = Q_{ij} \alpha(i,j), \quad i \neq j$$

$$P_{ii} = Q_{ii} + \sum_{k \neq i} Q_{ik} (1 - \alpha(i, k))$$

Simulation Algorithm

TOTAL_STEPS = 5000 # large enough to ensure convergence process = [] # track the path of the process x = 1 # initial state
for step in 1...TOTAL_STEPS obtain t from T ~ Binom(max(2 * x, 2), 1/2) calculate alpha(X_n, t) generate u from U ~ uniform(0, 1) if (u < alpha) { x = t # accept jump from X_n to y, i.e. X_{n+1} = t } else { x = x # no jump, thinning

process.add(x) # cut of the first 1000 steps process = process[1001:]

To use MCMC sampling, we only need the kernel function, not the normalising constant

Poisson Process Poisson Distribution

If $X \sim Poi(\lambda)$

$$\prod_{i=1}^{n} N_{i} = \prod_{i=1}^{n} O_{i}(X_{i}),$$

.

(1)

(2)

$$p(x) = \frac{e^{-\chi_{\lambda}x}}{x!}, \ x = 0, 1, 2, \cdots$$

Mean =
$$\lambda$$
, Variance = λ , PGF = exp[$\lambda(t-1)$]
When $n \to \infty$ and $n \to 0$ then $Poi(\lambda)$ is a good approxim:

- \rightarrow 0, then $Poi(\lambda)$ is a good approximation for • When $n \to \infty$ and $p_n \to 0$, then $Poi(\lambda)$ is a good approxima $Bin(n, p_n)$ where $\lambda = np_n$ is a constant. • If $X \sim Poi(\lambda_1), Y \sim Poi(\lambda_2)$, then $X + Y \sim Poi(\lambda_1 + \lambda_2)$
- If $X \sim Po(\lambda)$ and $Z|X \sim Binomial(X, r)$, then $Z \sim Poi(\lambda r)$

Defining a Poisson Process

Definition 1: Using Poisson distribution. X is a Poisson process with parameter λ if:

- X(0) = 0
- For any $t \ge 0$, $X(t) \sim Poi(\lambda t)$

• for any $s \geq 0, t \geq 0$, we have $X(s + t) - X(s) \sim Poi(\lambda t)$ • for any $s \geq 0, t \geq 0$, we have $X(s + t) - X(s) \sim Poi(\lambda t)$ Definition 2: Law of Rare Events Let $\epsilon_1, \epsilon_2, \cdots, \epsilon_n$ be independent Bernoulli random variables where $P(\epsilon_i = 1) = p_i$, and let $S_n = \epsilon_1 + \cdots + \epsilon_n$. The exact probability for S_n , and the Poisson probability with $\lambda = p_1 + \cdots + p_n$ differ by at most:

$$P(S_n = k) - \frac{e^{-\lambda}\lambda^k}{k!} \le \sum_{i=1}^n p_i^2$$

Let N((s, t]) be a RV counting the number of events occurring in the interval

- (s, t]. Then, N((s, t]) is a Poisson process of intensity $\lambda > 0$ if:
 - The process increments $N((t_0, t_1]), N((t_1, t_2]), \cdots, N((t_{n-1}, t_n])$ are independent random variables.

$$P(N((t,t+h])=k) = \begin{cases} 1-\lambda h - o(h), \ k=0\\ \lambda h, \ k=1\\ o(h), \ k \geq 2 \end{cases}$$

Definition 3: Using waiting times.

- We can completely specify a Poisson process by simply recording the waiting times (or the sojourn times).
- The waiting time W₁ has (exponential) PDF:
 - $f_{W_1}(t) = \lambda e^{-\lambda t}, \ t \ge 0$
- For $n \ge 2$, W_n follows a gamma distribution with PDF:

$$f_{W_n}(t) = e^{-\lambda t} \frac{\lambda^n t^{n-1}}{(n-1)!}, \ n = 1, 2, \cdots, \ t \ge 0$$

- Exponential distributions have a memorylessness property.
- Given that X(t) = 1, we have: $f_{W_1}(x) = \frac{1}{t}$ for all $x \leq t$ and 0 otherwise (uniform on the interval (0, t].
- Given that X(t) = n, the joint distribution of n independent Unif(0, t)random variables (followed by ordering in ascending order) gives the distribution of the waiting times to be:

$$f(w_1, w_2, \cdots, w_n | X(t) = n) = \frac{n!}{n!}$$

• The PDF of the kth order statistic (i.e., the kth waiting time in this case) given that X(t) = n is given by:

$$f_k(x) = \frac{n!}{(n-k)!(k-1)!} \frac{1}{t} \left(\frac{x}{t}\right)^{k-1} \left(\frac{t-x}{t}\right)^{n-k}$$

Table 1: Common Discrete Distributions

Distribution	PMF	Mean	Variance	MGF	PGF
Bernoulli	$f(x;p) = p^x (1-p)^{1-x}$	p	p(1-p)	$M(t;p) = 1 - p + pe^t$	G(z;p) = 1 - p + pz
Binomial	$f(x;n,p) = \binom{n}{x} p^x (1-p)^{n-x}$	np	np(1-p)	$M(t;n,p) = (1-p+pe^t)^n$	$G(z;n,p) = (1-p+pz)^n$
Poisson	$f(x;\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$	λ	λ	$M(t;\lambda) = e^{\lambda(e^t - 1)}$	$G(z;\lambda) = e^{\lambda(z-1)}$
Geometric	$f(x;p) = (1-p)^{x-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$M(t;p) = \frac{pe^t}{1 - (1-p)e^t}$	$G(z;p) = \frac{pz}{1 - (1 - p)z}, z < \frac{1}{1 - p}$

Table 2. Common Continuous Distributions									
Distribution	PDF	Mean	Variance	CDF	MGF				
Uniform	$f(x;a,b) = \frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$F(x;a,b) = \frac{x-a}{b-a}$	$M(t;a,b) = \frac{e^{tb} - e^{ta}}{t(b-a)}$				
Normal	$f(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	μ	σ^2	$\Phi(x;\mu,\sigma) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right) \right]$	$M(t;\mu,\sigma) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$				
Exponential	$f(x;\lambda) = \lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$F(x;\lambda) = 1 - e^{-\lambda x}$	$M(t;\lambda) = \frac{\lambda}{\lambda - t}, \ t < \lambda$				
Gamma	$f(x; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	$\gamma(\alpha,\beta) = \frac{1}{\Gamma(\alpha)}\gamma(\alpha,\beta x)$	$M(t;\alpha,\beta) = \left(\frac{\beta}{\beta-t}\right)^{\alpha}, t < \beta$				

Table 2: Common Continuous Distributions