
MA3238 Finals Cheatsheet
by Devansh Shah

Probability Review

Definition of Expectation

E[X] =
∑

x∈RX

xP (X = x)

Property of Expectation:
E[a + bX] = a + bE[X]

Linearity of Expectation does not require independence - it always holds true.

E[
n∑

i=1

Xi] =
n∑

i=1

E[Xi]

Minimization of Variance: E[X] is the constant c that minimizes the squared

loss E[(X − c)2].
Variance:

V ar(X) = E[(X − E(X))
2
] = E[X

2
] − (E[X])

2

Properties of Variance:

V ar(a + bX) = b
2
V ar(X)

Moment Generating Function:

MX (t) = E[e
tX

]

There is a 1-1 mapping between X and MX (t), i.e, the MGF completely describes
the distribution of the random variable.
Usefulness of MGF:

E[X
k
] =

dk

dtk
MX (t)|t=0

MGF of Linear Transformation of Variable:

MaX+b(t) = e
bt

MX (at)

Joint Distribution
pX,Y (x, y) = P (X = x, Y = y) = P ({ω : X(ω) = x ∧ Y (ω) = y})

Marginal Distribution

pX (x) = P (X = x) =
∑
y

P (X = x, Y = y) = P ({ω : X(ω) = x})

Covariance
Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))] = E[XY ] − E[X]E[Y ]

Correlation

Cor(X, Y ) =
Cov(X, Y )√

V ar(x)
√

V ar(Y )
Variance on linear combination of RVs:

V ar(aX + bY ) = a
2
V ar(X) + b

2
V ar(Y ) + 2abCov(X, Y )

When Xi’s are independent, then V ar(
∑n

i=1 Xi) =
∑n

i=1 V ar(Xi) since the

pairwise covariance is zero.

Also, when the RVs are independent,

M∑n
i=1

Xi
(t) =

n∏
i=1

MXi
(t)

That is, under independence of RVs, variance becomes additive and MGF becomes
multiplicative.

Conditional Probability

pX|Y (x|y) = P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
Multiplication Law

pX,Y (x, y) = pX|Y (x|y) × pY (y) = pY |X (y|x) × pX (x)

Law of Total Probability

pX (x) =
∑
y

pY (y)pX|Y (x|y)

Bayes Theorem

pY |X (y|x) =
pX,Y (x, y)

pX (x)
=

pX|Y (x|y) × pY (y)∑
y pY (y)pX|Y (x|y)

Conditional Independence We say X ⊥ Y given Z if for any x, y, z:
P (X = x, Y = y|Z = z) = P (X = x|Z = z)P (Y = y|Z = z)

Note: Independence and Conditional Independence are unrelated.

Law of Iterated Expectation
E[X] = E[E(X|Y )]

Law of Total Variance
V ar(X) = E[V ar(X|Y )] + V ar(E[X|Y ])

Random Sum: Y =
∑N

i=1 Xi where Xi’s are i.i.d with mean µ and variance σ2,

and N is also random.
Expectation:

E[Y ] = µE[N]
Variance:

V ar(Y ) = σ
2
E[N] + µ

2
V ar(N)

Moment Generating Function:
MY (t) = MN (ln(MX (t)))

First Step Analysis

Express the quantity of interest as:

ai = E[
T∑

n=0

g(Xn)|X0 = i]

for every state i, and see what happens after one-step transitions.

General Solution to Gambler’s Ruin
Case 1: When p = 1/2,

P(broke) = 1 −
k

N
E[games played] = k(N − k)

Case 2: When p ̸= 1/2,

P(broke) = 1 −

 1 − (q/p)k

1 − (q/p)N



E[games played] =
1

(p − q)

N(1 − (q/p)k)

1 − (q/p)N
− k


A drunk man will find his home, but a drunk bird may get lost forever.

Classification of States
Accessibility: For a stationary MC {Xn, n = 0, 1, 2, . . . } with transition
probability matrix P , state j is said to be accessible from state i, denoted by

i → j, if P
(m)
ij

> 0 for some m ≥ 0.

Communication: If two states i and j are accessible from each other, i.e., i → j
and j → i, then they are said to communicate, denoted by i ←→ j.
Reducibility: An MC is irreducible if ALL the states communicate with one
another (i.e,. there is a single communication class). Otherwise, the chain is said
to be reducible (more than one communication class).
Return Probability: For any state i, recall the probability that starting from

state i and returns at i at the nth transition is that: P
(n)
ii

= P (Xn = i|X0 = i).

By definition, P
(0)
ii

= 1, P
(1)
ii

= Pii.

First Return Probability: For any state i, define the probability that starting
from state i, the first return to i is at the nth transition:

f
(n)
ii

= P (X1 ̸= i, X2 ̸= i, . . . , Xn−1 ̸= i, Xn = i|X0 = i). We set fii = 0.

Relationship between Return Probability and First Return Probability:

P
(n)
ii

=
n∑

k=0

f
(k)
ii

P
(n−k)
ii

Note: Recurrency ≠⇒ P
(n)
ii
→ 1.

fii =
∞∑

n=0

f
(n)
ii

= lim
N→∞

N∑
n=0

f
(n)
ii

Recurrent and Transient: A state i is said to be recurrent if fii = 1, and
transient if fii < 1.
Number of Revisits:

• If fii < 1 (i.e,. i is transient), there is E[Ni|X0 = i] =
fii

1 − fii
• If fii = 1 (i.e,. i is recurrent), there is E[Ni|X0 = i] = ∞

We also have:
• P (Ni ≥ m|X0 = i) = fm

ii (probability of revisiting the state more than m

times).

• E[Ni|X0 = i] =
∑∞

n=1 P
(n)
ii

Equivalent Definitions of Recurrence and Transience:

Recurrent ⇐⇒ fii = 1 ⇐⇒
∞∑

n=1

P
(n)
ii

= ∞ ⇐⇒ E[Ni|X0 = i] = ∞

Transient ⇐⇒ fii < 1 ⇐⇒
∞∑

n=1

P
(n)
ii

< ∞ ⇐⇒ E[Ni|X0 = i] < ∞

Note:
• If i and j are in the same communication class, then either they are both

recurrent or they’re both transient.
• Corollary: An MC with finite states must have at least one recurrent class.

Long Run Performance
Period: For a state i, let d(i) be the greatest common divisor of

{n : n ≥ 1, P
(n)
ii

> 0}. If {n : n ≥ 1, P
(n)
ii

> 0} is empty (starting from i, the

chain will never revisit i), then we define d(i) = 0.
If d(i) = 1, we call the state i to be aperiodic.
Periodicity Theorem:

1. If i and j can communicate, d(i) = d(j)

2. There is a threshold N such that P
(N∗d(i))
ii

> 0, and for any n ≥ N,

P
(n∗d(i))
ii

> 0

3. There is m > 0 such that P
(m)
ji

> 0, and when n is sufficiently large, we

have P
(m+nd(i))
ji

> 0

If all the states in an MC have period = 1, then we say that the MC is aperiodic.
Regular MC: A Markov Chain with transition probability matrix P is called

regular if there exists an integer k > 0 such that all the elements Pk are strictly
positive (non-zero).
If a Markov Chain is irreducible, aperiodic, with finite states, then it is a regular
MC.

Main Theorem
: Suppose P is a regular transition probability matrix with states
S = {1, 2, . . . , N}. Then,

1. The limit limn→∞ p
(n)
ij

exists. Meaning, as n → ∞, the marginal

probability of P (Xn = j|X0 = i) will converge to a finite value.

2. The limit does not depend on the initial state, and we write:

πj = lim
n→∞P

(n)
ij

3. The distribution of all of the πk is a probability distribution, i.e.,∑N
k=1 πk = 1, and this is the limiting distribution

4. The limits π = (π1, π2, . . . , πn) are the solution of the system of
equations:

πj =
N∑

k=1

πkPkj, j = 1, 2, . . . , N

N∑
k=1

πk = 1

In matrix form,

πP = π,
N∑

k=1

πk = 1

5. The limiting distribution π is unique.

Interpretations of π
• πj is the (marginal) probability that the MC is in state j for the long run

(regardless of the actual instant of time, and the initial state, hence
”marginal”).

• π gives the limit of Pn

• π can be seen as the long run proportion of time in every state. That is,

E

 1

m

m−1∑
k=0

I(Xk = j)|X0 = i

 → πj as m → ∞

Until time m (for a large value of m), the chain visits state j around
m × πj times.

Irregular Markov Chain
2 possibilities:

1. |S| = ∞ and πi = 0 for all i (which means that all the states are

transient).

2. We find a solution π for πP = π (the distribution doesn’t ”move”)

Stationary Distribution A distribution (p1, p2, . . . ) on S is called a stationary
distribution, if it satisfies for all i = 1, 2, . . . that:

P (Xn = i) = pi =⇒ P (Xn+1 = i) = pi
Note that if the initial distribution of X0 is not π, we cannot claim any results.

For a regular MC, the stationary distribution is also a limiting distribution.

A key observation is that the stationary distribution must have πi = 0 for all
transient states i

Long Run Performance for Infinite MCs
First Return Time: Ri = min{n ≥ 1, Xn = i}. In words, it is the first time
that the process Xn returns to i.
Relationship between first-return time, and first-return probability:

f
(n)
Ii

= P (Ri = n|X0 = i).

Mean Duration Between Visits:

mi = E[Ri|X0 = i] =
∞∑

n=1

nP (Rn = i|X0 = i) =
∞∑

n=1

nf
(n)
ii

Note that we can only define mi when fii = 1. When we have fii < 1, then the
probability that there are infinitely many steps between 2 visits is non-zero, and
equal to 1 − fii so the expectation will be infinity (which is not very meaningful).

Limit Theorem
For any recurrent irreducible MC, define:

mi = E[Ri|X0 = i] =
∞∑

n=1

nf
(n)
ii

Then,

1. For any i, j ∈ S,

lim
n→∞

n∑
k=1

P
(k)
ij

/n = 1/mj

2. If d = 1, then

lim
n→∞

∞∑
n=1

P
(n)
ij

= 1/mj

3. If d > 1, then

lim
n→∞

∞∑
n=1

P
(nd)
jj

= d/mj

Note that the theorem applies for MCs with infinitely many states too! It also
applies for periodic MCs.
Remarks:

• When mj = ∞, the limiting probability at each state is 0, although it is

recurrent. We call such a MC to be null recurrent. For example, consider
the symmetric random walk with p = 1/2 and no absorbing state. Note
that it is still recurrent (there’s only one class so it must be recurrent).

• When mj < ∞, the limiting probability at each state is 1/mj . In such a

case, we call it a positive recurrent MC. e.g. Random walk with p < 1/2
(process eventually reaches 0) and “reflection” at 0, i.e.,
P (Xn = 1|Xn−1 = 0) = 1

When d > 1, we can only consider the steps nd.
When d = 1, the limiting probability is positive, which means that it is a
regular MC.



Basic Limit Theorem
For a positive recurrent (mj < ∞), irreducible, and aperiodic MC,

• limn→∞ P
(n)
ij

exists for any i, j and is given by:

lim
n→∞P

(n)
ij

= lim
n→∞P

(n)
jj

=
1

mj
• If π is the solution to the equation πP = π, then we have:

πj =
1

mj
A positive recurrent, irreducible, aperiodic MC is called an ergodic MC. Hence,
the basic limit theorem applies to all ergodic MCs. We do NOT require the MC to
have finite/infinite states for the theorem to hold.

Procedure for a General MC
1. Find all the classes Ck

2. Set up a new MC where every recurrent class is denoted by one state.
Then, find P (absorbed in recurrent class Ck|X0 = i) denoted by uk|i →
this gives the probability of entering any recurrent class, given the initial
distribution.

3. We can ignore all transient classes because the process will eventually leave
them in the long-run, i.e., their long-term probability is zero.

4. For every recurrent class Ck, we find the period d.

(a) Aperiodic (d =1): find the corresponding limiting distribution of
state j in this class, denoted by πj|k, by considering the sub-MC

restricted on Ck

(b) Periodic (d > 1): there is NO limiting distribution, but we can still
check the long-run proportion of time in each state by finding mj
(i.e., we can still find π but the interpretation is different in this
case)

5. Consider the initial state X0 = i:

(a) If j is transient, then πj = 0

(b) If j ∈ Ck is recurrent, then:
πj|i = uk|iπj|k

6. Finally, given the initial distribution X0 ∼ π0, then:

πj|π0
=
∑
i∈S

πj|iπ0(i)

Branching Process
Suppose initially there are X0 individuals. In the n-th generation, the Xn

individuals independently give rise to number of offsprings ξ
(n)
1 , ξ

(n)
2 , · · · , ξ(n)

Xn
,

which are i.i.d. random variables with the same distribution as:
P (ξ = k) = pk, k = 0, 1, 2, · · ·

The total number of individuals produced for the (n + 1)-th generation is:

Xn+1 = ξ
(n)
1 , ξ

(n)
2 , · · · , ξ(n)

Xn
Then, the process {Xn}∞n=0 is a branching process.

An important (and strong) assumption of the branching process is that ξ is not
dependent of Xn.

Partial Information
If we are only given the mean µ and variance σ2 of ξ, and suppose X0 = k:

•
E[Xn|X0 = k] = kµ

n

•

V ar(Xn|X0 = k) = kµ
n−1

σ
2 ×

{
1−µn

1−µ
, µ ̸= 1

n, µ = 1
In the derivation of the above, we use the law of total variance for a random sum:

V ar(Xn+1) = µ2V ar(Xn) + σ2E[Xn]

Complete Information
Probability Generating Function (PGF) For a discrete random variable X, the
probability generating function is defined as:

ϕX (t) = E[t
X

] =
∞∑

k=0

P (X = k)t
k

Note: If X and Y are independent, then ϕX+Y (t) = ϕX (t)ϕY (t).

Distribution of Xn given X0 = k:

ϕXn
(t) = [ϕ

(n)
ξ

(t)]
k

Extinction Probability: Here, un is the probability of going extinct by the nth
generation.

u
(k)
n = [ϕ

(n)
ξ

(0)]
k

Eventually Extinct: If u∞ = 1, it means the population is guaranteed to go
extinct eventually.
The value of u∞ must be the solution of the equation:

x = ϕξ(x), x ∈ [0, 1]

ϕξ(x) is an increasing function on (0, 1]. The second derivative is also positive -

hence, ϕξ(x) will increase faster and faster. Note that:

d

dx
ϕξ(x)|x=1 =

∞∑
k=1

P (ξ = k) · k · 1k−1
=
∞∑

k=0

kP (ξ = k) = E[ξ]

Consider a branching process with the distribution of ξ as F . The extinction
probability u∞ can be found as follows:

• If P (ξ = 0), then u∞ = 0 → no chance of extinction because every
individual generates at least one offspring.

• If P (ξ = 0) > 0 and E[ξ] < 1, then the process is called subcritical, and
u∞ = 1 (the population eventually goes extinct)

• If P (ξ = 0) > 0 and E[ξ = 1], then the process is called critical and
u∞ = 1 (still goes extinct)

• If P (ξ = 0) > 0 and E[ξ] > 1, then the process is called supercritical and
u∞ < 1, and it can be found by the equation: x = ϕ(x) where

ϕ(x) =
∑

k P (ξ = k)xk

Page Rank Algorithm
• The state space S is the set of all webpages
• Index set T = {0, 1, 2, · · · }
• Transition Probability Matrix:

Pij =

{ 1
# of connected webpages

, if there is an arrow from i to j

0, otherwise
For an irreducible and positive recurrent MC induced, we order the webpages in
the order:

(πN )(1) ≥ (πN )(2) ≥ · · · ≥ (πN )(|S|)
To handle absorbing states, we add perturbation to the MC at every step.

πn+1 = (1 − λ)πnP + λπ0
where 0 < λ < 1

MCMC Sampling
Global Balanced Equations:

∀j, π(j) =
∑
k∈S

π(k)Pkj

Local Balanced Equations:
∀i ̸= j, π(i)Pij = π(j)Pji

Local Balanced Equations in terms of Thinning Parameter:
π(i)Qijα(i, j) = πjQjiα(j, i)

where 0 < α ≤ 1

Hastings Metropolis Algorithm
1. Set up Q so that the MC with transition probability matrix Q is irreducible

2. Define α(i, j) as:

α(i, j) = min

πjQji

πiQij

, 1


3. Then, P is obtained as:

Pij = Qijα(i, j), i ̸= j (1)

Pii = Qii +
∑
k ̸=i

Qik(1 − α(i, k)) (2)

Simulation Algorithm
TOTAL_STEPS = 5000 # large enough to ensure convergence
process = [] # track the path of the process
x = 1 # initial state
for step in 1...TOTAL_STEPS

obtain t from T ~ Binom(max(2 * x, 2), 1/2)
calculate alpha(X_n, t)
generate u from U ~ uniform(0, 1)
if (u < alpha) {

x = t # accept jump from X_n to y, i.e. X_{n+1} = t
} else {

x = x # no jump, thinning
}
process.add(x)

# cut of the first 1000 steps
process = process[1001:]

To use MCMC sampling, we only need the kernel function, not the normalising
constant.

Poisson Process
Poisson Distribution
If X ∼ Poi(λ),

p(x) =
e−λλx

x!
, x = 0, 1, 2, · · ·

• Mean = λ, Variance = λ, PGF = exp[λ(t − 1)]
• When n → ∞ and pn → 0, then Poi(λ) is a good approximation for

Bin(n, pn) where λ = npn is a constant.
• If X ∼ Poi(λ1), Y ∼ Poi(λ2), then X + Y ∼ Poi(λ1 + λ2)
• If X ∼ Po(λ) and Z|X ∼ Binomial(X, r), then Z ∼ Poi(λr)

Defining a Poisson Process
Definition 1: Using Poisson distribution.
X is a Poisson process with parameter λ if:

• X(0) = 0
• For any t ≥ 0, X(t) ∼ Poi(λt)
• for any s ≥ 0, t > 0, we have X(s + t) −X(s) ∼ Poi(λt)

Definition 2: Law of Rare Events Let ϵ1, ϵ2, · · · , ϵn be independent Bernoulli
random variables where P (ϵi = 1) = pi, and let Sn = ϵ1 + · · · + ϵn. The exact
probability for Sn, and the Poisson probability with λ = p1 + · · · + pn differ by
at most: ∣∣∣∣∣∣P (Sn = k) −

e−λλk

k!

∣∣∣∣∣∣ ≤
n∑

i=1

p
2
i

Let N((s, t]) be a RV counting the number of events occurring in the interval
(s, t]. Then, N((s, t]) is a Poisson process of intensity λ > 0 if:

• The process increments N((t0, t1]), N((t1, t2]), · · · , N((tn−1, tn]) are

independent random variables.
•

P (N((t, t + h]) = k) =

{
1 − λh − o(h), k = 0
λh, k = 1
o(h), k ≥ 2

Definition 3: Using waiting times.
• We can completely specify a Poisson process by simply recording the

waiting times (or the sojourn times).
• The waiting time W1 has (exponential) PDF:

fW1
(t) = λe

−λt
, t ≥ 0

• For n ≥ 2, Wn follows a gamma distribution with PDF:

fWn
(t) = e

−λt λntn−1

(n − 1)!
, n = 1, 2, · · · , t ≥ 0

• Exponential distributions have a memorylessness property.

• Given that X(t) = 1, we have: fW1
(x) = 1

t
for all x ≤ t and 0 otherwise

(uniform on the interval (0, t].
• Given that X(t) = n, the joint distribution of n independent Unif(0, t)

random variables (followed by ordering in ascending order) gives the
distribution of the waiting times to be:

f(w1, w2, · · · , wn|X(t) = n) =
n!

tn
• The PDF of the kth order statistic (i.e., the kth waiting time in this case)

given that X(t) = n is given by:

fk(x) =
n!

(n − k)!(k − 1)!

1

t

( x

t

)k−1
(

t − x

t

)n−k

Appendix

Table 1: Common Discrete Distributions
Distribution PMF Mean Variance MGF PGF
Bernoulli f(x; p) = px(1− p)1−x p p(1− p) M(t; p) = 1− p+ pet G(z; p) = 1− p+ pz

Binomial f(x;n, p) =
(n
x

)
px(1− p)n−x np np(1− p) M(t;n, p) = (1− p+ pet)n G(z;n, p) = (1− p+ pz)n

Poisson f(x;λ) = e−λλx

x!
λ λ M(t;λ) = eλ(e

t−1) G(z;λ) = eλ(z−1)

Geometric f(x; p) = (1− p)x−1p 1
p

1−p
p2

M(t; p) = pet

1−(1−p)et
G(z; p) = pz

1−(1−p)z
, |z| < 1

1−p



Table 2: Common Continuous Distributions
Distribution PDF Mean Variance CDF MGF

Uniform f(x; a, b) = 1
b−a

a+b
2

(b−a)2

12
F (x; a, b) = x−a

b−a
M(t; a, b) = etb−eta

t(b−a)

Normal f(x;µ, σ) = 1
σ
√
2π

e
− 1

2

(
x−µ
σ

)2
µ σ2 Φ(x;µ, σ) = 1

2

[
1 + erf

(
x−µ

σ
√
2

)]
M(t;µ, σ) = eµt+ 1

2
σ2t2

Exponential f(x;λ) = λe−λx 1
λ

1
λ2 F (x;λ) = 1− e−λx M(t;λ) = λ

λ−t
, t < λ

Gamma f(x;α, β) = βα

Γ(α)
xα−1e−βx α

β
α
β2 γ(α, β) = 1

Γ(α)
γ(α, βx) M(t;α, β) =

(
β

β−t

)α
, t < β
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